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The splitting of cluster orbitals is discussed within the framework of Stone’s tensor surface harmonic (TSH) theory. We proceed 
by analogy with the splitting of spherical harmonics subject to the same potential. We show how the energy level spectrum of 
a cluster compound correlates with its shape and discuss both closo-boranes and gold clusters in this context, making comparisons 
with molecular orbital calculations. The approach provides a particularly elegant description of the variation in electron count 
of a series of related gold clusters. I t  also enables us to rule out certain rearrangement pathways for toroidal gold clusters; for 
example, we find that oblate toroidal gold clusters cannot rearrange through a prolate transition state for reasons of orbital 
symmetry. 

Introduction 

has proved to be a highly versatile tool in the discussion of the 
bonding in cluster compounds. In particular the method has been 
used to provide a firmer theoretical foundation for empirical rules 
of cluster electron counting such as the Debor principle4 and the 
polyhedral skeletal electron pair t h e ~ r y . ~  Comparisons have also 
been made6 with King’s graph-theoretical approach.’ 

In brief, TSH theory is based upon an approximate descent in 
symmetry from the full rotation group. Basis functions are 
classified as 0, T ,  and 6 according to the number of nodal planes 
they possess that contain the radius vector from the center of the 
cluster to the atom. Cluster orbitals are formed from a-type basis 
functions (which contain no nodal planes containing the radius 
vector) by using the values of spherical harmonics evaluated a t  
the cluster vertices as expansion coefficients. A useful comparison 
may be made with the Huckel wave functions for cyclic and linear 
polyenes: the appropriate linear combinations can be obtained 
from the wave functions for a free electron on a ring or in a box, 
respectively. For an approximately spherical cluster, we use the 
eigenfunctions for a free electron on a sphere in a similar manner 
to construct and classify cluster wave functions. For example, 
a u cluster orbital, 

In recent years Stone’s tensor surface harmonic (TSH) 

is given by 

where Bi and @i are the angular spherical polar coordinates of vertex 
i. 

To  deal with T -  and &type basis functions (with one and two 
nodal planes containing the radius vector, respectively), we proceed 
in a similar manner but use the values of tensor surface harmonics 
as expansion coefficients. For x cluster orbitals (with one nodal 
plane containing the radius vector) the gradient vector is evaluated 
a t  each vertex and gives the required coefficients when resolved 
in the directions of, e.g., two tangential p orbitals. Further details 
may be obtained e l~ewhere . l -~  

More recent developments include the development of a 
structural TSH model6 and the use of TSH theory in the discussion 
of cluster rearrangements.* 

The most important characteristic of the TSH theory cluster 
orbitals for the present work is their transformation under rota- 
tions. For Ic/i,M ( A  = u, T ,  6) the L and M subscripts reflect the 
parentage of the orbital under spherical symmetry, where they 
arc good quantum numbers. In  a finite point group, we find that 
functions with different L or M do not mix with each other very 
strongly, and hence L and M are useful symmetry labels. Fur- 
thermore, the cluster orbitals transform under rotations of the p i n t  
group in the same way as the parent spherical harmonic upon 
which the expansion coefficients are based. Under reflections, 
inversions, and other “imprclper” symmetry operations, they may 
transform in the same way or with a change of sign. However, 
the cluster orbitals do not transform in the same way as the 
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spherical harmonics under arbitrary rotations. This is because 
rotations that do not belong to the molecular point group move 
the centers for the atomic orbitals in the linear expansion. 

A number of powerful theoretical results may be applied to 
Hamiltonian (or indeed overlap) matrix elements of functions 
which do transform like the spherical harmonics under arbitrary 
rotations by using the Wigner-Eckart theorem? Strictly speaking, 
the spherical harmonics are spherical tensors, and the matrix 
element theorems that may be applied are the same as those used 
in finding general selection rules in spectroscopy. These results 
may be used to prove a barycenter (center of gravity) rule for the 
splitting of such functions in finite point groups. W e  will argue 
that the splitting of cluster orbital manifolds, $i,M, should be 
qualitatively similar and will show how this conclusion leads us 
very simply to a number of interesting observations, including the 
correlation of the energy level spectrum of a cluster with its shape 
and the rationalization of the electron counts of various gold 
clusters. 

Expansion of the Electron-Nucleus Potential Energy 

The Coulomb interactions between an electron, i ,  and a set of 
N nuclei may be expanded in a series of spherical harmonics: 

,=I  ria 

where Z ,  is the atomic number of nucleus a ,  ria is the distance 
between electron i and nucleus a and ri< and r,, are the smaller 
and larger of the distances of the electron and the nucleus in 
question from the origin, respectively. Atomic units are employed 
for convenience (one atomic unit of energy (1 hartree) equals 27.2 
eV). Such an expansion has been used extensively in the crystal 
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Splitting of Cluster Orbitals 

field theory of transition-metal complexes,I0 and although the 
expansion appears to be rather complicated, the number of sig- 
nificant terms is often quite small for highly symmetrical clusters. 
It has also been used before by Hoffmann and Gouterman in their 
perturbation theory approach to the energy levels of polyhedral 
molecules.” 

The Coulombic electron-nucleus potential energy, V,  may 
therefore be written as a sum of two terms: 

V = V, + VI (3) 
where Vo = -4rxUZu/r, ,  and Vi denotes the remainder of V. Vo 
is clearly the part of V that is unchanged by all the operations 
of the full rotation group, and the same separation is used in 
ligand-field theory.l2 For example, it is well-known that the 
significant part of V4 for an octahedral transition-metal complex 
is usually written 

(4 )  

Taking Vo together with the kinetic energy terms gives us a 
zero-order Hamiltonian in which all the operators transform 
according to the irreducible representation S, of the full-rotation 
group. Hence, to establish our barycenter rule for the first-order 
splittings of a set of 2 L  + 1 spherical harmonics, YL,M ( M  = -L 
to +L),  we must show that the functions are not split by V, and 
that the first-order energy corrections under the perturbation VI 
sum to zero. In fact, these results follow immediately from the 
transformation properties under rotations, but since they may not 
be familiar to cluster chemists, we will explain them below. 

First, consider the matrix elements of Vo within the YL,M ma- 
nifold. The Wigner-Eckart theorem9 states that 

(J’M’IT$M) = (JKMQIJ’M’) (J’IITKIIJ) ( 5 )  

where (JKMQIJ’M’) is a Clebsch-Gordan coefficient and 
(J’IITKIIJ) is a reduced matrix element that is independent of M ,  
M‘, and Q. T; is a spherical tensor of rank K and in the present 
work will always be a spherical harmonic, YK,e. Since Vo is 
proportional to Yo,o, K and Q are both zero for this term, and the 
matrix elements of Vo therefore depend only upon the Clebsch- 
Gordan coefficients (LOMOILM’). However, for a general 
Clebsch-Gordan coefficient to be nonzero, two conditions must 
be satisfied: (a) It must be possible to make a triangle with sides 
of length J ,  J’, and K;  that is, the sum of any pair of principal 
quantum numbers must be greater than or equal to the third. 

(b) We must have M’ = M + Q. For Vo, the first condition 
is satisfied, and the second requires M = M’, so that there are 
no off-diagonal matrix elements. Furthermore, the diagonal matrix 
elements are all equal because’ 

(LOMOIL-M) = 1 ( 6 )  

The reader could rightly complain that in this case we have 
“used a sledgehammer to crack a nut”, since it is clear that a 
Hamiltonian containing only terms that transform as S, in the 
full rotation group cannot lift the ( 2 L  + 1)-fold degeneracy of 
the spherical harmonics, YL,M, which are the irreducible repre- 
sentations of this group. The example above was really given for 
illustration of how one may use the Wigner-Eckart theorem in 
a simple case. 

It is actually not much harder to prove the second part of the 
barycenter rule. We have shown that the zero-order Hamiltonian 
matrix is diagonal within a given YL,+, manifold and that the 
diagonal elements are all the same. Let us choose our origin of 
energy a t  the zero-order energy of the YL;M set and apply de- 
generate perturbation theory for the term VI. This simply means 
that we diagonalize the secular matrix of Vi. For a barycenter 
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lb) 
Figure 1. Cluster skeletons of (a) B5H5*- and (b) BgH2-, which both 
have DSh symmetry. 

rule to hold, we must show that the sum of the eigenvalues of this 
secular determinant is zero. Since the sum of the eigenvalues, 
t i ,  is the trace of the secular matrix with diagonal elements 
(LMJV,ILM’), we have 

(7) 

The right-hand side vanishes because the sum xMYL,MY*L,M 
transforms as S, in the full-rotation group (like a filled atomic 
subshell), whereas Vi, by definition, does not. Hence, we have 
demonstrated that a barycenter rule applies to the first-order 
splitting in an arbitrary potential of the 2L + 1 spherical harmonia 
YL,M, that is before interaction between functions with different 
L is admitted. The great utility of TSH theory is, of course, that 
these latter interactions are generally small for cluster orbitals. 

As mentioned in the previous section, we cannot formally prove 
the above theorems for TSH theory cluster orbitals, because the 
latter lack any higher symmetry beyond that of the point group 
for which they are constructed. Hence we cannot expect the 
relative splittings of a cluster orbital manifold, $;,,,, to be exactly 
the same as those of the spherical harmonics, YL,M, in the same 
potential. However, we would expect the patterns to be quali- 
tatively similar, particularly for L“ orbitals, which do not involve 
directional derivatives. The L“ and L6 cluster orbitals are based 
upon tensor spherical harmonics for which the matrix element 
theorems discussed above also apply. Hence, we expect their 
matrix elements and splitting patterns to show similar trends too. 

This qualitative similarity is enough for our purposes, since we 
will not need to use any of the matrix element theorems quan- 
titatiuely. The predictions may also be compared with the results 
of various molecular orbital calculations. Furthermore there are 
a number of interesting cases where the frontier orbitals are $‘ 
in character: gold clusters will be treated below, and silicon 
clusters, in a subsequent paper. Note that the zero-order energy 
of a cluster orbital manifold is expected to follow the trends 
observed by Stonel for his calculated average cluster orbital en- 
ergies. 

There are two situations of interest that it is helpful to clarify 
at this point. The first is the case where we do not require all 
the 2L + 1 members of a given $k,M set in the cluster orbital basis. 
(Recall that the minimal basis set must remain linearly inde- 
pendent under a cluster orbital transformation.) In this case we 
simply ignore the components that are surplus to requirements 
after considering the appropriate spherical harmonic splittings. 
The second (much rarer) case arises when some of the cluster 
orbitals in a given set are null, e.g. D‘&,r,xy for the octahedron. 
Here again we would expect a qualitative similarity to the splitting 
of the appropriate spherical harmonic components to remain. 

We will now show how this analogy may be used in the cor- 
relation of the cluster shape with the molecular orbital energy level 
spectrum and in the study of rearrangements and electron counts 
of some gold clusters. 
Oblate and Prolate Clusters 

We first consider the relation between the shape of a cluster 
and its energy-level spectrum. Consider the expansion of the 
electron-nucleus potential energy given above. The point group 
symmetry of the molecule determines which spherical harmonics 
appear with nonzero coefficients in this sum; there are more terms 
in lower order point groups.’O However, this is not the whole story 
because we have not yet considered the magnitude of the nonzero 
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terms. This is clearly determined by the degree of distortion of 
the cluster from spherical symmetry. Consider BSHt- and BgHg2- 
as examples of molecules that both belong to DJh (Figure 1). 
Considering the positions of the skeletal atoms relative to the 
principal axis shows that the trigonal bipyramid may be described 
as prolate (like a rugby ball) while the tricapped trigonal prism 
is oblate (like a discus). GriffithIO provides tabulations of the 
nonzero terms in the potential energy for various point groups 
including this one, and we will make use of these results below. 
First, we define real combinations of the spherical harmonics, FL,M 
and IRL:M, which are proportional to cos ( M @ )  and sin (MC#J), 
respectively: 

where M > 0, i = d-I, and the asterisk denotes complex con- 
jugation. For D3h the nonzero terms involve YLa and YL,3 for L 
even and VL,3 for L odd. 

Griffith'O also determines the number of parameters required 
to describe the splitting of p, d, and f atomic orbitals in a given 
point group. The same number of parameters will be required 
for the splitting of a cluster orbital manifold, and can be deter- 
mined by descent in symmetry tables from the splitting of the P, 
D, and F irreducible representations of the full-rotation group in 
the lower symmetry point group. For example, D splits into A,  

2E in D3, so that two parameters are required to describe the 
relative splittings. One parameter is needed for the t28-es splitting 
in oh, and is written as A or lODq for the d orbitals of a tran- 
sition-metal complex. For a Y2,M manifold ( M  = 0, f l ,  f 2 )  in 
Dgh symmetry, there are two terms in the potential responsible 
for the splitting, and by use of the selection rules for Clebsch- 
Gordan matrix elements given above, these are easily seen to be 
Y2,0 and Y4,o. The relative splittings caused by each term alone 
are completely determined (in first order) by the Wigner-Eckart 
theorem. Although these selection rules will not apply quanti- 
tatively to the splittings of a set of D2,+, cluster orbitals, we expect 
the same two terms in the potential energy to be the most im- 
portant. 

I f  all the nuclei are the same distance from the origin, then we 
may factor out the sum over cy, which for the trigonal bipyramid 
gives 

(9 )  

The ratios of the coefficients for the two terms are therefore 
I :-I .29 and 1 :-0.46 for Y2,0 and Y4,0. respectively. 

Note that corresponding terms have coefficients of different 
sign in (9) and (10). This shows how the oblate or prolate nature 
of a cluster can affect the order of the energy levels because of 
the different distribution of atoms relative to the nodal surfaces 
of the spherical harmonics in the potential expansion. This can 
also be seen if we explicitly consider the addition of the potentials 
due to the different nuclei. Such an approach has been used in 
crystal field theory to estimate the d-orbital splittings for a wide 
range of transition-metal cornplexe~.'~ We shall persue this point 
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(a) 

Figure 2. P" orbital splittings (schematic) for Au7(PPh3),+ (left) and 
A U ~ ( P P ~ , ) , ~ +  (right).15 

in more detail in the following sections. 
The relative splittings caused by any particular term in the 

potential expansion are fully determined by the Wigner-Eckart 
theorem for a set of spherical harmonics because the reduced 
matrix elements are constant within a given manifold. The 
Clebsch-Gordan coefficients required are tabulated in various 
sources? and we will give the results for the five YZ,M functions 
in the D3h point group. For the Y2,0 term the relative splittings 
are found to be -2:-1:2 for lw = 0, 1, and 2, while for the Y4,o 
term the ratio is 6:-4:l in the same order. Note that a barycenter 
rule applies to these results; e.g., -2 + 2 X (-1) + 2 X 2 = 0. 

To simplify the following discussions, we will concentrate upon 
the splitting of PA cluster orbitals in some axial point groups. For 
the spherical harmonics we immediately obtain the ratio -2:l for 
the relative energies of the a- and e-type orbitals that usually result 
from this splitting, relative to an energy origin taken at the average 
energy of the three orbitals, as always. This example is actually 
very interesting, since the P" orbitals lie at the frontier level in 
a number of spherical and toroidal gold  cluster^.'^ The relative 
splittings of the P" orbitals have important stereochemical con- 
sequences for partially filled shells. In particular, for a two-electron 
system the geometry which places Po" below P:, is favored (by 
40 relative to 20; the Po" orbital lies a t  2/3 when the Pz1 pair lies 
at -0, with fi  C 0). For four-electron systems the geometry that 
places the P:, pair below Pg is favored (by 4p to 2p). For prolate 
clusters, Po" generally lies below Pzl while for oblate clusters the 
reverse usually holds. 

An example where an inversion of the P" orbitals can be seen 
occurs in going from pentagonal bipyramid (oblate) to a capped 
octahedron (prolate). The orbital splittings of P" for these two 
examples are shown in Figure 2, and extended Huckel calcula- 
tions" indicate that for A u ~ ( P P ~ ~ ) ~ +  the oblate geometry is 
preferred, while the prolate geometry is preferred for A u ~ ( P P ~ ~ ) , ~ + ,  
in  agreement with the sense of the P" splitting deduced below. 

These ideas are also relevant to understanding the geometries 
of alkali-metal clusters. Li, is calculated to have a "spherical" 
tetracapped tetrahedral geometry corresponding to the occupation 
of S" and the three P" cluster orbitals.I6 I n  contrast Li, is 
predicted to have a planar D3h raft geometry (oblate). 

We will now consider in more detail the distortion of a trigonal 
antiprism into a chair while D3d symmetry is maintained (Figure 
3) .  The two clusters are related by stretching along the 3-fold 
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(a) lb) 

Figure 3. Dld cluster skeletons: (a) the trigonal antiprism; (b) the 
"chair". The two are related by a distortion along the 3-fold axis. 

I 
Figure 4. Variation of the P" energies with 0 for the trigonal-antiprism 
-chair distortion (by analogy with the splitting of Yl,M ( M  = f l ,  0)). 

principal axis, and the same nonzero terms arise in the expansion 
of the potential energy as for the D3h closo-boranes above. For 
PA cluster orbitals, the analogy with the matrix elements of Y,,M 
( M  = 0, f l )  suggests that the terms involving Y2,0 will be the 
most important (all the others vanish for Y,,M because of the 
triangle selection rule on the ClebschGordan coefficients). Hence 
we consider 

(11) 

The structural factor that is expected to determine the mag- 
nitude of the cluster orbital splittings is therefore C u ( 3  cos2 6'u 
- I ) ,  or simply (3 cos2 6 - 1) since all the vertex atoms have the 
same cos2 0,. This factor is positive in the region 0' < 6' < 54.73O 
and negative for 54.73O < 6' < 90'. Hence as 6' passes through 
cos-' ( l / d 3 )  = 54.73' the splitting of the P" set should reverse. 
At the critical angle, all three energy levels are degenerate because 
the cluster then has octahedral symmetry. The determination of 
the sense of the splitting is quite straightforward, as discussed in 
the next section. Pz is the high-lying inaccessible orbital for the 
"chair" structure, while the PI,y set is higher lying in the trigonal 
antiprism (Figure 4) as can be seen by considering the effect on 
P," of pulling the two triangles of atoms apart to a large distance. 

The skeletal bonding orbitals for the toroidal gold cluster 
Au,( PPh3)6+ (Figure 5a) are calculated to be S" and P&,I4 in 
agreement with the above analysis. I n  fact, Mingos has shown 
that all centered toroidal gold clusters have occupied S" and PgI 
cluster orbitals and 1 2 4  + 16 valence electrons, where n, is the 
number of gold atoms in the ring." The 16 electrons arise from 
a filled d shell on the central gold atom and occupation of S" and 
Pz l .  Examples of gold clusters that conform to this generalization 
include A U , ( P ( P - C ~ H ~ O M ~ ) ~ ) ~ ~ +  (crown, Figure 5b) and Au,- 
(PPh3)s3+ (icosahedron minus two pairs of adjacent atoms, Figure 
5c). In  pseudospherical gold clusters the three P" cluster orbitals 
are approximately degenerate and there are 12n, + 18 valence 
electrons. Examples of such clusters include A u ~ ( P P ~ ~ ) ~ +  (dis- 
torted cube. Figure 5d) and A U , ~ C I ~ ( P M ~ ~ P ~ ) , ~ ~ +  (icosahedron). 

Note that the inversion of order is due to the cluster vertices 
crossing the nodal cone of Y2,0 a t  0 = 54.37'. It is precisely this 

(17) Hall. K P .  Mingos, D. M P. Prog. lnorg Chem. 1984, 32. 237. 

id (d I 
Figure 5. Gold skeletons of (a) A u , ( P P ~ ~ ) ~ + ,  (b) Au,(P(p- 
C6H40Me)3)83+, (c) A u , ( P P ~ ~ ) ~ + ,  and (d) A U ~ ( P P ~ & ~ + .  

E E 

(a) 

Figure 6. The splitting of a set of D" orbitals in a trigonal-bipyramidal 
cluster (a) is expected to be inverted with respect to the splitting of a set 
of d atomic orbitals on the central metal atom in a complex with the same 
symmetry (b). 

sort of feature that will often lead to different relative orderings 
of levels in prolate and oblate molecules. As we have seen above, 
this ordering may be of great importance for orbitals a t  the frontier 
level. 
Determination of the Order of the Energy Levels 

In the previous section we noted that the inversion of the a and 
e symmetry orbitals derived from P" is of great significance for 
electron counting in gold clusters. Hence, it is a matter of some 
importance to determine which way around this splitting will be. 

For L" cluster orbitals this question may be answered by 
comparison with the atomic orbital splittings in a transition-metal 
complex. In the simplest crystal field model, we would simply 
consider the spatial characteristics of the atomic orbitals in 
question relative to the positions of the ligands, modeled as point 
negative charges. Orbitals with a large amplitude in the proximity 
of one or more ligands would be expected to suffer a relatively 
large Coulombic repulsion and consequently to be high lying. For 
L" orbitals the same considerations may be applied except that 
the electron-nucleus potential is attrartiue rather than repulsive. 
For example, the angular characteristics of a set of D" orbitals 
are the same as those of a set of d orbitals on a central transi- 
tion-metal atom in a complex. Hence we expect an inversion of 
the splittings of L" with respect to the 1 atomic orbitals in a 
complex with u-donor ligands in the same arrangement as the 
cluster vertices (Figure 6 ) .  

For L" and L* cluster orbitals, the situation is complicated by 
the directional character of the functions involved, and the splitting 
may not be in the same sense as the L" orbitals. Instead we would 
expect the patterns to be related to those of the appropriate tensor 
spherical harmonics. For example, the L" orbitals have their 
maximum amplitude a t  the nodes of L" (because this is where 
the gradient of Yl.,M is largest), but it is still the nodal distribution 
of the parent spherical harmonic relative to the vertex sites that 
is most important. I f  we consider P," and PT for a trigonal prism, 
it is clear that the cross-equator interaction is antibonding i n  both 
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Figure 7. P* splittings in the trigonal prism: (a) P“; (b) P’ 
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Figure 8. Plot of calculated HOMO and LUMO energies in the B,H:- 
series. 

cases. However, when the in-plane interaction is included6 we 
find that P,“ lies lower than e,y while P: lies higher than P:s 
(Figure 7 ) .  
Application to Cluster Rearrangements 

Above, we considered the energy level spectra of toroidal 
(oblate) and spherical (prolate or oblate) gold clusters and found 
that the P“ frontier orbitals are typically split in different senses 
in the two sets. It follows that skeletal rearrangements that involve 
a change in shape in the transition state may be unfavorable due 
to orbital crossings or avoided crossings, as discussed in detail 
elsewhere.I8 

Since all these gold clusters are known to be fluxional, it follows 
that the mechanisms will involve no qualitative change of shape.I8 
For example, the pentagonal-bipyramidal gold cluster Au7(PPh3)7f 
(oblate) is not expected to rearrange in a double diamond- 
square-diamond process via the capped octahedron (prolate). 
Instead a “local bond rotation”’’ may be responsible for the ob- 
served fluxionality, since the cluster remains approximately oblate 
throughout this process. 
Application to closo -Boranes 

For the smaller closo-borohydrides, B,,H;-, it is well-known 
both theoretically and experimentally that species with an odd 
number of boron atoms are generally less stable than their 
even-numbered counterparts.” A plot of the calculated HOMO 
and LUMO energies for B5H52- up to Bz,Hz,2- (excluding those 
molecules with deviations from the n + 1 skeletal electron count) 
is given in Figure 8. This shows that in terms of the HOMO- 
L U M O  gap this stability trend may extend to the hypothetical 
species too: there is also a steady decrease in the HOMO-LUMO 

(18) Wales, D. J.; Mingos, D. M .  P.; Zhenyang, L. Inorg. Chem., following 
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IHOMO-LUMO gap/eV 111.5 117.3 1 7.7 I 7.5 111.7 1 12 114.5 19.3 114 I 

gap with increasing n, as expected. If we compare B,H;- with 
B,tlH,,+12- for each relevant pair of neighbors, we find that the 
HOMO-LUMO gap usually rises if n is even and falls if n is odd, 
despite the underlying trend downward. 

These gaps were calculated by using the Fenske-Hall method,21 
and the hypothetical molecules (with more than 12 vertices) have 
been the subject of several previous s t ~ d i e s . * ~ , ~ ~  The geometries 
used were identical with those of Fowler,23 and the results verify 
the conclusions of the previous studies: the hypothetical molecules 
are expected to be electronically stable. (Deviations from the usual 
n + 1 skeletal electron pairs occur due to the detailed symmetry 
of some species.) The reason for the nonexistence of these higher 
closo-boranes is therefore not electronic; in fact, the answer 
probably lies in the dynamics of cluster growth, as discussed 
elsewhere.24 

The trends observed in Table I may be explained by considering 
three factors. First, note that there is a strong correlation between 
the point group symmetry of any given molecule in this series and 
its HOMO-LUMO gap. Clearly, the higher the order of the point 
group, the more closely the cluster is likely to approximate to a 
sphere. For molecules belonging to high-symmetry point groups, 
the basis atomic orbitals will in general span a larger number of 
different irreducible representations (IRs) than those for less 
symmetrical species. In low-symmetry molecules, the mixing of 
the frontier orbitals with other orbitals of the same symmetry can 
raise the HOMO in energy and lower the LUMO, resulting in 
a smaller gap. Second, for larger clusters there is more mixing 
between orbitals transforming according to the same IR, simply 
because of the increase in dimension of the basis. 

The third factor is the shape of the cluster. The closo-boranes 
considered in this section, except for the octahedron and icosa- 
hedron, usually oscillate between prolate and oblate geometries. 
As explained above, the point group symmetry of the molecule 
determines which spherical harmonics appear with nonzero 
coefficients in the expansion of the electron-nucleus potential 
energy. For lower symmetry clusters, there are more nonzero 
terms whose magnitude is a measure of the distortion from 
spherical symmetry. Furthermore, by analogy with the spherical 
harmonics, we expect only a few of the nonzero terms to produce 
most of the splitting. In fact we should probably compare the 
splitting of an L” manifold with that of the vector spherical 
harmonic YL,M = (VYL,Mee)ee + (VYL,M.e@)e@ as defined by the 
integral JY,MY*,,+,V d7, which is a scalar integral over all space. 
Unfortunately the latter splittings are not as easily visualized as 
those of the spherical harmonics themselves. Nonetheless there 
are certainly some trends for the HOMO-LUMO gaps of the 
closo-boranes in Table I that are suggestive of a simple splitting 
pattern. The most obvious feature is the large gaps observed for 
“spherical” clusters where all the vertices are equivalent, i.e. the 
octahedron and the icosahedron. This is probably due to factors 
one and two, above. However, clusters with the L;, members of 
the outer L“ manifold (that is the one with the largest L )  occupied 
also have large gaps. Examples are the trigonal bipyramid (five 

(21) Fenske, R. F.; Caulton, K. G.; Radtke, D. D.; Sweeney, C. C. Inorg. 
Chem. 1966,s. 951. Fenske, R. F.; Radtke, D. D. Inorg. Chem. 1968, 
7 ,  179. Fenske, R .  F.; DeKcck, R. L. Inorg. Chem. 1970,9, 1053. Hall, 
M. B.; Fenske, R. F. Inorg. Chem. 1972, 1 1 ,  768. 

(22) Brown, L. D.; Lipscomb, W. N. Inorg. Chem. 1977,16,2989. Bicerano, 
J . ;  Marynick, D. S.; Lipscomb, W. N.  Inorg. Chem. 1978, 17, 2041, 
3443. 

(23 )  Fowler, P. W. Polyhedron 1985, 4 ,  2051. 
(24) Wales, D. J .  Chem. Phys. Lett. 1987, 1 4 1 ,  478. 
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nunber of vertices 

Figure 9. Splitting psttcm for the outer I: manllold ruggcrtcd by Ihe 
HOMO-LL U O  gap\ a l  B,H<'-. B,H,'-. B,oH,o'-, and R,,II,,'- The 
gaps expected for three passible occupations of these orbitals are marked. 

vertices) and the bicapped square antiprism (ten vertices). This 
could be explained if the splitting of the L'orbitals in these sets 
leaves these two orbitals low-lying, as illustrated in Figure 9. 
Furthermore, clusters with a single member of the outer L" 
manifold unoccupied also have relatively large HOMO-LUMO 
gaps. Examples are the pentagonal bipyramid (seven vertices, 
D;, and D;, occupied) and the ICatom DU symmetry structure 
(F;,, and F;, occupied). This could agam be explained if 
the splitting resulted in a relatively high-lying L," orbital, a s  in 
Figure 9. This might be caused by the nodal surfaces of YLo, 
which can be written as 0 = constant, bisecting more edges in these 
clusters than those of the other members of the YLMset (which 
always include nodal planes of the form $ = constant). 

We also note that a relatively small H O M S L U M O  gap occurs 
for BaHs2- in which the outer D' shell is filled. The F' shell is 
precisely filled at  the IS-vertex DIh structure, which also has a 
relatively small gap. The nine-vertex tricapped trigonal prism 
is particularly interesting since the H O M O  belong! to the F set. 
A small gap results in this case because the F and F sets overlap. 
probably because this cluster is actually not very spherical. 
Overlap also occurs for the I I-vertex deltahedron, which also has 
a relatively small gap. again indicating a splitting pattern with 
L," high lying. Of course, we should not try to stretch this pattern 
too far, since factors one and two (above) must also be important. 
The occupation of the D" and F" orbitals is summarized for the 
closo-boranes with 5-15 vertices in Figure IO.  

How does this analysis compare with the experimental dataz0 
lor the closc-boranes? A small HOMO-LUMO gap may result 
in greater reactivity and an inherent kinetic instability; nucleophiles 
will attack the low-lying LUMO, and electrophiles will attack the 
high-lying HOMO. This may also be interpreted in terms of the 
point group symmetry and charge distribution of the molecule; 
in a low-symmetry species the electronic environments of some 
vertex atoms are inherently different, leading to polarity and 
increased reactivity. The charge distribution in a cluster may also 
be discussed conveniently within the TSH theory framework. The 
main factors of importance are the coordination numbers and the 
molecular orbital occupation. In B8H,2-, for example, the occupied 
L' set consists entirely of the filled subshells P" and D", but this 
is not usually the case in most other clusters, and the observed 
charge distributions can be attributed to differences in connectivity. 
The presence of partially filled L'subshells must obviously reflect 
the point group symmetry of the molecule and the charge dis- 
tribution?l For the D' manifold an unoccupied orbital leads to 

31s 
31 c 
30 

Figure 10. Occupation of the IT and F' orbitals for eloso-borane5 with 
5-15 vertices. The icosahedron is omitted because symmetry-adapted 
linear combinations of these functions are needed in this case. The 
alternative (hatched lines) shading indicates that it i s  the odd cluster 
orbital which is actually occupied. Note that the choice of cluster orbitals 
within a given incomplete L' manifold is not always unique. 

a depletion of electron density in a fairly obvious manner. It is 
helpful to note that filled DZzaZJy and D:*L$,~* sets have full cubic 
symmetry in the octahedral point group. For example, in the 
prolate trigonal-bipyramid B5Hsz-, where Dz, orbitals afe oc- 
cupied, there is a depletion of electron density in the xy plane and 
an increase on the z axis due to the absence of DZY In contrast. 
for the oblate pentagonal-bipyramid B,H,l- only the D;x orbital 
is not required, and there is a buildup of electron density in  the 
xy plane. These results are illustrative of the more general 
principle that negative charge often builds up at  points of lowest 
connectivity in a cluster, and the cluster orbital basis set must 
reflect this distribution. When this observation is combined with 
first-order perturbation theory, it is possible to predict the more 
stable isomers for, e.& carboranesJ6 For example, in C2B3H~ 
(prolate) the most stable isomer has the carbon a t o m  at  the poles, 
whereas for CzB5H, (oblate) the carbon atoms are equatorial in 
the most stable isomer. 

These borane calculations also enable us to examine some 
previously derived estimates for the bonding trends followed by 
even and odd T cluster orbitals with increasing cluster nuclearity.6 
The critical value of the TSH "quantum number" L for which 
odd T orbitals are expected to become bonding in a regular 
polyhedron of coordination number A is given by 

Lc 5 A/2 

where A is the coordination number of the vertices within the 
cluster skeleton. This enables us to estimate the cluster nuclearity, 
n, at  which the odd and even T orbitals may begin to  overlap? 
we find that v'(n + I) = X/2 + I .  This is likely to be an un- 
derestimate for less regular clusters because the number of edges 
increases more rapidly than the average coordination number. 

The percentage of odd r orbital character in the occupied 
frontier levels was indeed found to  increase along the series 
B,,H,,z- to B,,H2b2-. However, the changes involved are smaller 
than would be expected from the crude estimate of odd-even 
*-orbital overlap above. This should not surprise us, since the 
number of nearest-neighbor contacts in these molecules rises a s  
3n - 6, where n is the number ofvertices, which is significantly 
faster than the increase in average coordination number when 
compared to regular polyhedra. (The number of nearest-neighbor 
contacts may be readily derived by noting that these species have 
I 2  five-coordinate and n - 12 six-coordinate vertices.) 

However, node-counting arguments of the above type can 
provide some useful insight at a more qualitative level. A 

( 2 5 )  Minga. D. M. P.; Hawer. C. Sfrucr. Bonding 1985.63. I .  Mingos. D. 
M. P. Pur< Appl. Chem. 1981, 59. 145. 

. ~. 
( 2 6 )  Gimarc. B.  M.: 0 1 1 . J .  J .  J .  Am. Chem. Soc. 1986. 108.4298. 
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Fenske-Hall calculation on B32H322- shows that the HOMO has 
T,, symmetry and belongs to the odd H" set of P orbitals. Its 
conjugate TI, partner, belonging to the H" set, is the L U M O  of 
this cluster, and lies about 1 eV above the HOMO. Hence we 
see that for this highly symmetrical species, with only two types 
of vertex atom, the odd and even x sets do indeed overlap. 

Inorg. Chem. 1989, 28, 2154-2164 

its energy level spectrum with particular reference to the closo- 
borohydrides. The shape of the molecule determines the sense 
of the cluster orbital splittings as well as the magnitude of the 
nonzero terms in the potential energy expansion. These expec- 
tations are illustrated by the different electron counts of toroidal 
and spherical gold clusters and are also expected to influence the 

Conclusions 
In this paper we have discussed the splitting of cluster orbitals 

using the framework of Stone's tensor surface harmonic (TSH) 
theory. Although the TSH theory cluster orbitals do not transform 
like their parent spherical harmonics under arbitrary rotations, 
we still expect the splitting patterns to be qualitatively similar. 
In particular, when the electron-nucleus potential energy is ex- 
panded in spherical harmonics a center-of-gravity rule may be 
deduced for the first-order splitting of the spherical harmonics, 
YL,M, by the non spherically symmetric part of the Hamiltonian. 

The splittings of cluster orbitals are found to depend upon the 
relation between the nodal surfaces of the nonzero terms in the 
spherical harmonic expansion and the cluster vertices. Hence we 

skeletal rearrangements of these species.. 
Some of the techniques used have direct analogies in crystal 

field theory. In particular, a set of L" cluster orbitals should be 
split in the opposite sense to a set of 1 atomic orbitals on the central 
atom of a complex with ligands in the same arrangement as the 
cluster vertices. 

In fact, there is another center-of-gravity rule that applies to 
complete sets of, e.g., o and P cluster orbitals. If each orbital in 
an interacting set has the same self-energy, a, then one can easily 
prove that there is a center-of-gravity relative to LY = 0. 
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In this paper, we continue a theoretical study of the rearrangements of cluster skeletal atoms with emphasis on the possible 
differences between transition-metal and main-group clusters. We show that the selection rules for orbital-symmetry-forbidden 
"TSH-forced" crossings, derived for main-group clusters using Stone's tensor surface harmonic (TSH) theory, should also be 
applicable to transition-metal clusters as long as the metal fragments are isolobal to B-H. We also discuss the feasibility of various 
single edge-cleavage mechanisms that were not previously considered for main-group clusters in  part 1. Using TSH theory and 
polyhedral skelectal electron pair theory] electron-counting rules, especially for "capping" and "condensation" principles, we find 
that most of the new processes recently suggested in another study are probably unfavorable. Some alternative mechanisms are 
therefore suggested, with particular attention being paid to the new possibilities predicted for transition-metal clusters. 

Introduction 
The theoretical study of rearrangements in cluster compounds 

has recently been elegantly analyzed with use of Stone's tensor 
surface harmonic (TSH) theory.2-6 The new approach, due to 
Wales and Stone7 (part 1 in this series), enables some rear- 
rangement processes that have an orbital crossing, and are 
therefore "forbidden" in the Woodward-Hoffmann sense,8 to be 
identified very simply. The analysis in part 1 explained, in terms 
of TSH theory, why Lipscomb's diamond-square-diamond (DSD) 
process9 (illustrated in Figure 1) should in principle be energetically 
favorable and identified some special cases where it is not. It was 
built partly upon King's topological considerations, which dis- 
tinguish between inherently rigid clusters (containing no degenerute 
edges) and those for which one or more DSD processes are to- 
pologically feasible.1° An edge is termed degenerate if a DSD 
process in which it is broken leads to a product with the same 
cluster skeletal geometry as the starting molecule. 

The conclusion of part 1 was that transition states between 
closo-boranes or closc-carboranes with a single atom on a principal 
rotation axis of order three or more will generally have an orbital 
crossing and hence be high-energy processes." The effect of lower 
symmetry environments, for example, when there is a single atom 
on a 2-fold axis, was also considered. In  this case, the barrier to 

'University of Chicago. 
$University of Oxford. 

rearrangement may also be large, depending upon the splitting 
of the HOMO and LUMO, which form a degenerate pair of E 
symmetry when the principal axis is of higher order. Substituents 
around the critical face a t  which the DSD process occurs may 
help to lower the barrier by increasing the difference between the 
electronic environments in the local x and y directions, and hence 
increasing the HOMO-LUMO gap.7 

Independently, Johnston and Mingos recognized that for clo- 
so-boranes, B,H;-, with 4p + 1 atoms, i.e. B5H52- and B9H92-, 
the single DSD process is symmetry forbidden because a mirror 
plane is retained throughout.'* In contrast, single DSD processes 
in which only a C2 symmetry element is conserved, e.g. for B8Hg2-, 
do not involve a crossing and are symmetry allowed. This sym- 
metry rule has its origins in the nodal characteristics of L" and 
cr cluster orbitals and their behavior under the symmetry op- 
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